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Abstract—Node forgery or impersonation, in which legitimate
cryptographic credentials are captured by an adversary, consti-
tutes one major security threat facing wireless networks. The
fact that mobile devices are prone to be compromised and re-
verse engineered significantly increases the risk of such attacks
in which adversaries can obtain secret keys on trusted nodes
and impersonate the legitimate node. One promising approach
toward thwarting these attacks is through the extraction of unique
fingerprints that can provide a reliable and robust means for
device identification. These fingerprints can be extracted from
transmitted signal by analyzing information across the protocol
stack. In this paper, the first unified and comprehensive tutorial
in the area of wireless device fingerprinting for security appli-
cations is presented. In particular, we aim to provide a detailed
treatment on developing novel wireless security solutions using
device fingerprinting techniques. The objectives are three-fold:
(i) to introduce a comprehensive taxonomy of wireless features
that can be used in fingerprinting, (ii) to provide a systematic
review on fingerprint algorithms including both white-list based
and unsupervised learning approaches, and (iii) to identify key
open research problems in the area of device fingerprinting and
feature extraction, as applied to wireless security.

Index Terms—Wireless security, device fingerprint, supervised
learning, unsupervised learning.

I. INTRODUCTION

W ITH the proliferation of mobile devices and the advent
of the Internet of Things, wireless technologies are

becoming essential parts in modern computing platforms and
embedded systems to provide low-cost, anytime, and anywhere
connectivity. While wireless networks share many of the same
vulnerabilities as wired networks and can be often used as
a stepping stone for attacks at a larger scale, the broadcast
nature of the wireless transmission medium tends to aggra-
vate the problems by making it easier to compromise the
service accessibility as well confidentiality and integrity of data
communication.
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Many cryptography-based approaches [1] exist for authenti-
cation, data confidentiality, and integrity in wireless networks.
However, such techniques are powerless in face of denial-
of-service attacks (DoS) such as jamming. Furthermore, im-
plementations of wireless security protocols are known to be
plagued with security holes that can be easily exploited. For
example, wired equivalent privacy (WEP) can be compromised
by statistical analysis [2], passphrases can be recovered in
Wi-Fi Protected Access (WPA) and Wi-Fi Protected Access II
(WPA2) [3], man-in-the-middle attacks in cellular networks [4]
and many others. Finally, many wireless networks such as
wireless mesh networks, wireless sensor networks, cognitive
radio networks, small cell networks assume a degree of coop-
eration among users. This makes them particularly vulnerable
to forgery and insider attacks once the malicious users obtain
security credentials from legitimate users and become part of
the networks. The fact that mobile devices are prone to hacking,
compromising, and reverse engineering, coupled with poor
security management mechanisms in wireless network systems,
significantly increases the risk of attacks. Therefore, novel and
low-complexity methods for efficiently identifying legitimate
users to detect potential attacks from malicious adversaries are
of great importance.

Recently, device fingerprinting, the process of gathering
device information to generate device-specific signatures and
using them to identify individual devices, has emerged as a
promising solution to reducing the vulnerability of wireless
networks to node forgery or insider attacks [5]–[15]. The basic
idea is to passively or actively extract unique patterns (also
called features) manifested during the process of wireless com-
munication from target devices. A variety of features can be
extracted and utilized including physical layer (PHY) features,
medium access control (MAC) layer features, and upper layer
features. Effective device fingerprints must satisfy two proper-
ties that include: i) they are difficult or impossible to forge, and
ii) the features should be stable in the presence of environment
changes and node mobility. The first requirement renders iden-
tifiers such as IP addresses, MAC addresses, electronic serial
number (ESN), international mobile station equipment identity
(IMEI) number, or mobile identification number (MIN). Un-
suitable candidates as all these identifiers have been shown to be
easily modifiable via software [16], [17]. In contrast, location-
dependent features such as the popular radio signal strength
(RSS) cannot be used on their own as fingerprints as they are
susceptible to mobility and environmental changes.

Despite many interests in wireless device fingerprinting and
their potential in enhancing wireless security, surprisingly, the
existing literature is sparse with no comprehensive overview on
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the state of the art and the key fundamentals involved. The main
contribution of this paper is thus to provide a detailed survey of
features and techniques that can be adopted in wireless device
fingerprinting. We introduce a comprehensive taxonomy of
wireless features that can be used in fingerprinting. Specifically,
we classify the features based on the layer of protocol stacks
they are generated from, whether they are active or passive, and
the granularity they can work at. In addition, the fingerprinting
algorithms are also systematically reviewed.

The rest of the paper are organized as follows. In Section II,
we first motivate the needs for device fingerprinting and then
give an overview of the basic procedure. In Section III, a
taxonomy of features that can be utilized in fingerprinting
approaches is provided. The advantages and disadvantages of
different features are also discussed. In Section IV, security
algorithms for device identification are discussed in detail. In
particular, we break down existing fingerprint algorithms into
white-list based and unsupervised learning based approaches.
In Section V, potential research directions are discussed, and
finally, we conclude the paper in Section VI.

II. OVERVIEW OF WIRELESS DEVICE FINGERPRINTING

A. Motivation

Node forgery or identity spoofing in itself may not cause sig-
nificant harm to the operations of wireless networks. However,
combined with other attack tactics, node forgery can be used to
launch more sophisticated attacks that may greatly compromise
the networks’ serviceability and confidentiality. For example, in
the authentication and association flooding attack in WLANs
[18], a malicious device sends out authentication or association
frames at short intervals to overload the access point (AP) or the
authentication server. If the malicious device uses a single MAC
address, the attack can be mitigated by blocking the MAC ad-
dress (though DoS may still occur due to jamming). However,
it is much harder to detect and block if the attacker changes its
MAC address in each request, mimicking the existence of many
clients.

To compromise the confidentiality of data, a malicious user
can set up a rogue base-station or AP (e.g., an AP installed
without the authorization of the system administrators). Instead
of communicating with a legitimate AP, connecting to a rogue
AP can result in the interception of data from clients. Though
the IEEE 802.11x has been deployed in conjunction with WPA
or WPA2 to authenticate APs in WLANs, many enterprise
networks use self-generated certificates (rather than those from
a certified authority), and users do not always verify the le-
gitimacy of the certificate provided. Similar problems exist in
cellular systems [19]. Many tools are available such as Airsnarf
[20] and Raw-FakeAP [21] that can be used to deploy rogue
APs in WLANs. Setting up multiple rogue APs by using multi-
ple MAC addresses on a single physical device can increase the
possibility of having legitimate users associated with one of the
rogue APs, and thus causes greater harm to data confidentiality.

A naive solution to defending against node forgery is to ver-
ify the MAC address of the device against the legitimate ones.
However, such “software” based identifiers are very easy to

spoof. For example, an ioctl system call in UNIX-like operating
systems can modify the MAC address of a network interface
card. Modifying or replacing the Erasable Programmable Read
Only Memory (EPROM) in a phone would allow the configura-
tion of any ESN and MIN via software for cellular devices. The
ease of compromising firmware or software identifications re-
mains a serious threat to the security of most wireless systems.

B. Enhancing Wireless Security With Device Fingerprints

A device identification system consists of a profiler that
extracts device fingerprints, targeted devices and in some cases,
a database that stores the fingerprints associated with legitimate
devices. Despite a variety of existing work on using fingerprints
to enhance wireless security, they generally follow three com-
mon steps, namely, i) identifying relevant features, ii) extracting
and modeling features, and iii) device identification. In what
follows, we elaborate more on each of these steps.

Step 1—Identifying Relevant Features: Signal transmission
in wireless communication offers a rich set of features that can
be utilized for the purpose of device identification. Relevant
features can be found at all layers of the protocol stack. Among
device-specific features, one can explore characteristics such
as clock skew observed from the time stamps of messages in
MAC layer frames, packet inter-arrival times in the MAC or
upper layers, and various physical layer RF parameters (e.g.,
the transient phase at the onset of transmissions, frequency
offsets, and phase offsets, etc.). Among location-dependent
features, one can use RSS or channel state information (CSI)
measured from trusted devices. Furthermore, multiple features
can be combined to form a device fingerprint. Different features
may have different granularities in device identification giving
rise to trade-offs in false positive and false negative rates. For
instance, location-dependent features such as RSS must be used
in conjunction with other credentials (e.g., device ID and MAC
address) to provide effective identification.

This step is different with feature selection which itself is a
challenging problem and is dependent on the hardware capabil-
ity of the system—an issue that will be discussed in Section III.

Step 2—Extracting and Modeling Features: In this step,
the features are extracted from raw observations from the
transmitted signal of targeted devices. While some features
such as RSS are readily available and can be easily measured,
profiling more complex features such as frequency or phase
shift differences requires more sophisticated signal processing
techniques and/or specialized hardware. Due to the dynamic
nature of wireless communication channels and imperfection
in the profiler implementation, the resulting features tend to be
stochastic. A proper stochastic model needs to be constructed
for device identification.

Step 3—Device Identification: Once features are extracted
and mapped to a stochastic model, the next step is to develop the
machine learning algorithms that utilize these features for de-
vice identification. Depending whether prior information exists
regarding the fingerprints of legitimate devices (called white-
list), the algorithm can be either supervised or unsupervised.
In supervised approaches, the newly obtained device finger-
print is compared against those in the white-list. If the new

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 10,2021 at 17:39:44 UTC from IEEE Xplore.  Restrictions apply. 



96 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 1, FIRST QUARTER 2016

Fig. 1. The application of fingerprints in detecting rogue APs.

fingerprint deviates significantly from the known ones, an
attack is detected. In unsupervised approaches, similar finger-
prints from multiple logical devices (as indicated by their iden-
tifiers) are grouped together and mapped to the same physical
device.

As an example, consider the use of device fingerprinting to
identify rogue APs. In Fig. 1, a malicious attacker masquerades
as an AP. User 5 and User 6 are associated with the rogue AP
to access the Internet and their data confidentiality is compro-
mised. As shown in Fig. 1, by introducing the fingerprinting
security system, the attacker can be detected. The profiler first
identifies (step 1) and extracts features (step 2) to generate the
fingerprints of legitimate APs, which are stored in a white-list.
To determine whether an AP is rogue or not, one can scan the
white-list to see whether a similar fingerprint exists.

III. A TAXONOMY OF FEATURES FOR

DEVICE FINGERPRINTING

A variety of features can be utilized for device fingerprinting.
In this section, we provide a taxonomy of features proposed in
literature. In particular, we classify the features based on the
layer of protocol stacks they are generated from, whether they
are active or passive, and the granularity they can work at. The
details of features are given in Section III-A. In the subsequent
discussion, we use the terms “feature” and “signature” inter-
changeably.

A. Features in Different Layers

1) PHY Layer: PHY layer features are derived from the
received RF waveform. They generally fall into two categories:
(i) Location dependent features; and (ii) Location independent
features (also known as radiometrics).

Location-Dependent Features: RSS is the most commonly
used location-dependent feature. It is typically reported as
a single number (e.g., in dB and dBm) by wireless device
drivers. RSS measures the average signal power at the receiver
and depend on the transmission power at the sender and the
attenuation in the channel. Two distant locations can have very
different RSS values with respect to the same transmitter. On
the other hand, if two devices are in close proximity, their

RSS values tend to be similar. Another more fine-grained
location-dependent feature is the channel state information at
the receiver (CSIR) [22], [23]. Due to small-scale fading, CSIR
can differ a lot when a receiver moves by only a fraction of
the wavelength. In [24], [25], the channel frequency response
(CFR) has been introduced to enhance the security of physi-
cal layer authentication. Considering the high implementation
complexity in broadband systems and the omission of the
spatial information of CFR-based authentication [26], channel
impulse response (CIR)-based approaches are explored as an
alternative for a simple time-invariant wireless environment
[22]. In [27], [28], the time-varying channel was considered
to improve the CIR-based authentication.The significant vari-
ation of multipath delay spread of CIR at different spatial
locations was exploited as a fingerprinting feature for physical
layer authentication [26]. Location-dependent features alone
are insufficient for fingerprinting as devices may move and the
channel condition changes over time.

Location-Independent Features: Location-independent fea-
tures pertain to the hardware implementation of individual
devices (chipsets). Despite significant advancement in micro-
electronic circuit design and manufacturing, there are still im-
perfections in the manufacture process of wireless transmitters
[6], [29], [30]. Such imperfections result in broad variations
in key device parameters (e.g. channel width, channel doping,
concentration, and oxide thickness) among production lots.
These variations, though small enough to meet the specifi-
cations of communication standards and certification require-
ments, allow for unique characterization of the devices and
form device fingerprints.

Hall et al. [11] found that the unique characteristics of
a transceiver are manifested in the turn-on transient portion
of signals. The difference in these transient behaviors among
different devices is observable even for transmitters from the
same manufacture lending them good candidates for finger-
printing. In [11], [14], once the transient phase is isolated,
amplitude, phase angle and frequency are extracted as features
using the Discrete Wavelet Transform (DWT), where ampli-

tude and phase are calculated as α(t) = √
I2(t) + Q2(t), θ(t) =

tan−1
[

Q(t)
I(t)

]
and I(t) and Q(t) are the in-phase and quadrature

components in the signal over time.
In [29], [30], Polak, Dolatshahi and Goeckel exploited power

amplifier imperfections to identify wireless devices. Since
power amplifiers are the last elements in the RF chain of
transmitters, it is especially hard for attackers to modify via
software. Specifically, the nonlinear characteristics of power
amplifiers are modeled with Volterra series representations
[29], [30]. The Volterra coefficients capture the I/O characteris-
tic of the associated amplifier, and form device fingerprints.

Brik et al. [6] implemented a system named “PARADIS” that
made use of features such as magnitude and phase errors, I/Q
origin offset and SYNC correlation of the frame in question.
In [12], Nguyen et al. exploited carrier frequency difference
(CFD) δfc and phase shift difference (PSD) φ to fingerprint
wireless devices. δfc is the difference between the carrier fre-
quency of the ideal signal and the one of the transmitted signal
which is likely to be different for different wireless transmitters.
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PSD φ is defined as the phase shift from one constellation to
a neighboring one which may vary because of the difference
between the transmitter amplifier for I-phase and Q-phase.
Nguyen et al. [12] further considered the use of second-order
cyclostationary feature (SOCF) in conjunction with PSD and
CFD to identify devices that employ OFDM transmission tech-
nologies. Clock offset is another feature which can be used as
fingerprint. In [31], Rahman,Yasmeen and Gross modeled oscil-
lator drift as Brownian motion frequency and phase drift based
on the fact that the two clock offsets between every two node
pairs drift independently and randomly overtime.They pro-
posed a sender-node-authentication method to improve wireless
security.

In extracting RF features, radiometric techniques can be clas-
sified into waveform domain and modulation domain based on
how they treat signals [6]. Waveform domain techniques [11],
[14], [29], [32], [33] consider time and frequency representation
as the basic blocks while modulation domain techniques [6]
represent signals in terms of I/Q samples. Waveform domain
techniques are more flexible but more complex. Modulation
domain techniques are better structured and well-behaved but
require knowledge of the respective modulation scheme.

In addition to taking advantage of existing fingerprinting
features, [23], [34] introduced a different class of identification
systems by imposing a so-called tag on the actual transmitted
message. Those super-imposed tags serve as fingerprints at the
physical layer to uniquely convey the authenticity of transmit-
ted messages, hence improving the security of wireless systems.

2) MAC Layer: Exploring features at MAC layer has also
attracted a lot of attention because such features are relatively
easy to extract and do not require specialized hardware. In
general, the key idea behind fingerprinting using MAC layer
characteristics is that some details are underspecified in the
standards, and the implementation of these details was left
to the vendors. Thus, MAC layer features are usually vendor
specific.

In [8], Desmond et al. characterized the active scanning
process in the IEEE 802.11 networks as cycles, where each
cycle consists of: i) a rapid burst of zero or more probe requests
with small time intervals in the range of milliseconds; and
ii) a probe request after a prolonged time period in the range
of tens of seconds. The large delays between cycles are termed
as “inter-burst latencies” and can be used for identification.
Franklin et al. [9] derived features based on the bin frequency
of arrival time between probe request frames during active
scanning. Corbett et al. also observed unique traffic patterns
due to differences in the implementation of the active scanning
function [35], [36]. They applied spectral analysis and used
frequency-domain features to detect unauthorized users.

To effectively detect MAC address spoofing, Jana and Kasera
[37] calculated the clock skew of an AP from the IEEE 802.11
Time Synchronization Function (TSF) timestamps sent in the
beacon/probe response frames and use it as device feature.
Arackaparambil et al. [38] analyzed the robustness of such
an approach and identified some deficiency. In particular, they
found that upon synchronization with a legitimate AP, a device
can “acquire” the same clock skew as the AP. Therefore, it is
not possible to detect a fake AP by comparing the clock skew

alone, with a reasonable degree of certainty. Instead, the authors
suggest to use the line-fitting error and jitter of the beacon
timestamps as features.

In [39], Corbett et al. explored the underspecified rate switch-
ing mechanism in the IEEE 802.11 standard. They recorded the
data rate information contained in the 802.11 PHY layer header,
and analyzed the occurrence of rate switching events using
spectral analysis. The periodicity embedded in the wireless
traffic caused by rate switching is used as device fingerprint.

Cache [40] proposed two methods for fingerprinting a de-
vice’s network card and driver, an active one and a passive
one. The active method uses the 802.11 association redirec-
tion mechanism. Though well specified in the IEEE 802.11
standard, it is very loosely implemented by different vendors.
As a consequence, each type of wireless cards behave differ-
ently during this phase the knowledge of which can set them
apart. The passive method analyses the duration field values in
802.11 data and management frames. Again, wireless cards
from different vendors compute the duration field in slightly
different ways.

Another source of MAC layer features can be derived from
the responses of wireless interfaces to non-standard events.
Bratus et al. [5] analyzed the IEEE 802.11 MAC header fields,
and singled out combinations of frame type, subtype and Frame
Control flags that are either prohibited by the standard, not ex-
plicitly prohibited but are of unclear utility, or simply unlikely
to occur in practice. They built BAFFLE, a frame generator and
injector that craft non-standard and malformed frames and elicit
the responses from targeted devices. The responses then form
features for device fingerprinting.

Neumann et al. [15] evaluated the effectiveness of various
MAC layer features for 802.11 devices including, transmission
rate, frame size, medium access time, medium access time
(e.g., backoff mechanism), transmission time, and frame inter-
arrival time. Two criterion were considered, i) similarity of
signatures from the same device generated at different time,
and ii) dissimilarity of the signatures from different devices.
The authors found that the network parameters such as trans-
mission time and frame inter-arrival time perform the best in
comparison to the other network parameters considered. The
authors suggested the combination of multiple parameters for
device fingerprinting as a future research direction.

3) Network and Upper Layer Features: In contrast to abun-
dant PHY and MAC layer features, features in other layers are
quite limited.

In [10], Gao et al. use TCP or UDP packet inter-arrival
time (ITA) from APs as signatures to distinguish AP types. In
particular, for each AP, multiple packet traces are collected.
After ITAs are computed, the time series are sampled using
bin sizes from 1 μs to 10 μs. The optimal bin size is chosen
that maximizes the difference in resulting ITAs among different
APs. Strictly speaking, ITA is not a transport layer feature as
it is useful only when packets from upper layers are tightly
clustered (also called “packet train”) and the spacing in time
for transmissions over the air is determined by the backoff timer
implementation of APs.

In [41], the traffic patterns are used as the features. The
cognitive radio users perform clustering over the primary user
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traffic patterns, so as to optimize their transmission strategies.
Similar idea can also be utilized for security purposes. For
example, in digital TV broadcasting, the traffic patterns are
very unique. If an attacker with very different traffic patterns
is detected, security alarms can be raised.

Another high-level feature that may be exploited in device
identification is browser signatures. Eckersley [42] shows that
modern web browsers provide the version and configuration
information to websites upon request. These information can
be used to track individual browser. It has been found that only
two in 286,777 browsers may share a common signature. Since
multiple browsers may run on the same machines and browser
signatures can be collected via wired networks as well, they
are out of the scope of this paper. Moreover, some literatures
use behavioral patterns of users as fingerprints [43], [44]. For
example, in [43], Hsu et al. analyze wireless users’ associa-
tion patterns by mining wireless network log from two major
university campuses. They find qualitative commonalities of
user behaviors from the two universities. Papadopouli et al.
characterize and analyze usage patterns of mobile users on
campus WiFi network [44]. They found that session and visit
durations are affected by mobility patterns and building types.
These patterns may be used to distinguish devices. However,
to our best knowledge, such application layer features have not
been explored in wireless security context.

B. Vendor Specific vs. Device Specific Features

As previously discussed, some fingerprinting features are
vendor specific and may change depending on the model and
firmware version of the devices; while other features are device
specific and are likely to differ even among devices from the
same vendor.

PHY layer features utilize imperfection in the manufacturing
process of individual chipsets, and are thus device specific.
However, MAC layer features mainly take advantage of un-
derspecified aspects of wireless standards as discussed earlier.
Therefore, most MAC layer features are vendor specific, with
the exception of clock skews in [15], [37], [38], which is device
specific if the timestamps are generated from a local oscillator.

Clearly, vendor specific features are of higher granularity
in device identification. However, since most of them can
be extracted by crafting or inspecting MAC layer frames,
commercial-off-the-shelf hardware would suffice in the imple-
mentation of such profilers.

C. Features Extracted via Passive or Active Methods

Another way to classify features for device fingerprinting
is based on the extraction methods. There are two categories,
namely, passive and active approaches. In passive approaches,
the profiler observes the ongoing communication of the targeted
system and extracts the needed features from the transmitted
signal or packet/frame traces. In contrast, active approaches,
inject signals or probe messages to elicit responses from devices
to obtain useful features. With a slight abuse of terminologies,
we call features extracted via passive and active methods,
passive and active features, respectively.

1) Passive Features: Among the features discussed thus
far, rate switching, active scanning, the clock skew from time
synchronization function (TSF) stamps, various radiometric
features, random back-off times, duration field values in 802.11
data and management frames, ITAs are all passive features.

Since passive approaches do not inject any stimulant into
the system, the extraction of passive features will not alert or
disturb the system being surveilled. The benefits are two-fold.
First, no additional medium contention or network congestion
will be introduced. Second, the attackers would not be able to
detect the existence of the defense mechanism.

2) Active Features: Active approaches involve interrogating
a node with various types of packets. These packets may vary
in size, and can be either legitimate or malformed. The work
by Bratus et al. that triggers responses from WiFi devices
using crafted frames with rare combinations of header fields is
one such approach. The feature extracted by exploiting 802.11
association redirection mechanism [40] requires the transmis-
sions of association responses with different source addresses,
and is thus of active nature. Compared to passive approaches,
active feature extraction is less covert. However, it allows the
extraction of features that are not otherwise feasible.

D. Summary

In this section, we have provided a taxonomy of features
that can be used for device fingerprinting. The features can be
categorized based on which layer of the network stack they
are from, whether passive or active extraction methods are
applied, and whether they are targeted for device or vendor
identification. A comparison of various features is provided in
Table I, detailing which categories they belong to.

IV. FINGERPRINTING ALGORITHMS

After extracting features and generating device fingerprints,
the final and key step is to develop fingerprinting algorithms
to identify wireless devices and detect illegitimate ones. Ac-
cording to whether prior information of legitimate devices is
required, fingerprinting algorithms can be divided into two cat-
egories: white-list based and unsupervised learning based algo-
rithms. White-list based algorithms need to register legitimate
devices to set up a database of the feature space of legitimate
devices, while unsupervised learning based algorithms do not
require such prior knowledge.

A. White-List Based Algorithms

Given a set of legitimate devices whose fingerprints (master
signatures) are known, the device identification problem is
thus to determine whether an unknown device is one of the
legitimate devices based on its fingerprint. Depending on the
type of fingerprinting features, two approaches can be used: one
is based on similarity measurement, and the other one makes
use of classification.

If the fingerprint of each device can be represented by a
vector, one simple approach is to compute the similarity of
the new fingerprint with each master signature and apply a
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TABLE I
THE DISTRIBUTION OF SOME SELECTED FEATURES IN DIFFERENT DIMENSIONS

Fig. 2. White-list based fingerprinting algorithm using similarity measurement.

threshold. One commonly used similarity metric for vectors
is cosine similarity. Given two vectors a and b, their cosine
similarity is defined as:

cos(θ) = a · b

‖a‖ · ‖b‖ ,

where a · b is the Euclidean dot product. Other similarity met-
rics can be adopted based on the characteristics of the features.
Fig. 2 illustrates the basic steps of such an approach.

Franklin et al. [9] used the time deltas between probe re-
quests characterized by a binning approach as feature. Simi-
larity is computed by iterating through all bins, summing the
difference of the percentages and mean differences scaled by
the percentage. The identification accuracy is shown to vary
from 77% to 97% depending on the bin size. Corbett et al. [36]
proposed a method using signal processing to analyze the peri-
odicity embedded in wireless traffic caused by active scanning,
and hence created a stable spectral profile of different types
of devices. An evaluation was conducted and showed that the
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Fig. 3. White-list based fingerprinting algorithm using classification.

proposed method can distinguish between NICs manufactured
by different vendors with zero false positives. In order to fin-
gerprinting wireless device, Gao et al. [10] proposed a passive
blackbox-based technique to identify different type of devices.
They extracted IAT as features and showed high accuracy under
the experiment scenario which has 6 types of AP.

The master signature can sometimes be a set of fingerprints
or can be represented using a distribution. In the case, we can
consider each type (to identify different type of devices) or NIC
ID (to identify individual devices) as a class, the problem is then
converted into a typical classification problem: given a set of
known classes, and a series of training data (fingerprints) with
class labels, how to classify a new incoming device into these
different classes? Traditional classification algorithms can be
used, and the flow diagram is shown in Fig. 3. There are several
previous literatures adopt this approach as well [5], [6], [11],
[13], [14]. By analyzing the time characteristics of 802.11 probe
request frames, Desmond et al. [8] proposed a fingerprint-
ing technique that differentiates between different individual
devices. In their approach fingerprints of unique devices are
represented by the clusters of inter-burst latencies which are
processed timing measurements of probe requests during active
scanning. To compare this kind of fingerprints the statistical
hypothesis testing is employed to determine if different traffic
traces captured are in fact emitted from the same or different
devices. In controlled environments, their technique was shown
to be consistent and accurate in distinguishing among different
devices. By challenging a user to prove its identity and hence
reinforce the security of wireless network, Ureten and Serinken
[14] presented a complete identification system to identify
an individual node in a wireless network. They exploited RF
features complex amplitude and phase angle to generate finger-
prints and used a probabilistic neural network for classification.
Under the limited testing environment the designed system was
able to classify signals with error rate 2%. As we discussed
earlier, the PARADIS system designed and implemented by
Brik et al. [6] also adopted classification algorithm to identify
network interface card of an IEEE 802.11 frame. They used
radiometric features including frequency error, SYSNC corre-
lation, I/Q offset, magnitude error and phase error, and clas-
sical classification algorithms including k-nearest neighbors
(KNN) and support vector machine (SVM). PARADIS was
shown to be able to differentiate among more than 130 NICs
with an accuracy more than 99%.

B. Fingerprinting Using Unsupervised Learning

Even though white-list based fingerprinting algorithms are
effective when the fingerprints of legitimate devices are avail-
able, registration of device fingerprints ahead of time is not
always feasible in practice. Hardware upgrade, new purchasing
or guest hosts introduce changes to the collection of legitimate
devices making such approaches unscalable in enterprise en-
vironments. As an alternative, several recent works such as
in [7], [12] proposed the application of unsupervised learning
in device fingerprinting. Unsupervised learning is a machine
learning term used to describe the process to find hidden struc-
tures in unlabeled data. In the context of device fingerprinting,
unsupervised learning based algorithms identify devices with
similar fingerprints and cluster them together. Due to the lack
of legitimate device information, unsupervised approaches gen-
erally cannot distinguish legitimate devices from illegitimate
ones. However, they are effective in detecting the presence of
identity spoofing when multiple devices with different finger-
prints assume the same identifier (also known as masquerade
attack), or a single device assumes multiple identifier (also
known as Sybil attacks). The process of applying unsupervised
learning algorithm to detect masquerade and Sybil attacks is
shown in Fig. 4.

One key challenge in applying unsupervised learning algo-
rithms to device fingerprinting is that the number of unique de-
vices is not a given prior. Consequently, the number of clusters is
unknown and needs to be extracted from the data. Nguyen et al.
[12] is among the first that applied non-parametric Bayesian
classification (NBC) approaches to device fingerprinting. NBC
has the advantage of adapting the model complexity (i.e., the
number of clusters) to the amount of data available, and thus
avoiding the problem of over-fitting and under-fitting [46].

More concretely, in [12], the feature space of a single de-
vice is modeled by a multivariate Gaussian distribution with
unknown parameters. Depending on the the prior knowledge
about the data, two classes of models can be used. The finite
Gaussian mixture Model (FGMM) is used in the case where
the number of clusters is known a priori, while the infinite
Gaussian mixture model (IGMM) is used when the number
of clusters is unknown or may vary over time. Each cluster
is associated with a unique physical device, and thus the
number of clusters equals to the number of active devices.
Since in general, we have no control over the number of active
(legitimate and illegitimate) devices, IGMM is more suitable.

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on February 10,2021 at 17:39:44 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: DEVICE FINGERPRINTING IN WIRELESS NETWORKS: CHALLENGES AND OPPORTUNITIES 101

Fig. 4. The application of unsupervised learning fingerprinting algorithms to device fingerprinting.

With IGMM, the fingerprint space of multiple physical devices
(of the same or different device IDs) is modeled as an infinite
Gaussian mixture (though only a finite subset can be observed).
A non-parametric Bayesian approach to unsupervised cluster-
ing with an unbounded number of mixtures could be then
developed. In the non-parametric Bayesian model, the clus-
ter labels are generated using a Dirichlet process (DP)—its
realization being a conjugate prior of categorical distribution.
Specifically, given the data set, �X, the hyper-parameters of
the Gaussian mixtures, H the base distribution of DP, and the
concentration parameter α, the goal is to determine the indicator
zi of observation i. To do so, we need to derive an expression for
the distribution of �Z given the prior knowledge and then, use the
Gibbs sampling method to sample from the distribution and find
the class labels with the Maximum a Posterior. The marginal
distribution of each zi given by P(zi = k|�Z−i, α, �θ, �H, �X), where
zi is the unknown label of observation i while �Z−i is the
vector of labels to observations other than the ith one. With the
application of the Bayesian rule, the marginal distribution can
be written as:

P(zi =k|�Z−i, α, �θ, H, �X) = P(zi =k|�Z−i, α, �θk, �H, �xi)

∼ P(�xi|zi =k, �Z−i, α, �θk, H)

× P(zi =k|�Z−i, α)

∼ P(�xi| �θk)P(zi =k|�Z−i, α),

(1)

where �X is the set of feature points, �θ is the parameter of
distribution of each cluster, zi = k indicates that the feature
point �xi belongs to class k. In (1), P(�xi| �θk) is the likelihood
and simply a Gaussian distribution. The only unknown term is
P(zi = k|�Z−i, α), which can be determined by the generative
model FGMM or IGMM. A Collapsed Gibbs Sampling method
was proposed to reduce the sample space while sampling the
values of the parameters and hence improve the efficiency of
the algorithm.

In [12], Frequency difference and phase shift difference have
been used as device fingerprints. The authors conducted ex-
periments using Zigbee devices in controlled experiments and
achieved 98.2% success rate in detecting Masquerade attacks
and 99.3% probability in successfully detecting Sybil attacks.

In addition to IGMM, the infinite hidden Markov random
field model (IHMRF) has also been applied in designing fin-
gerprinting algorithms [7]. Unlike [12], Chen et al. [7] use both
location-independent features such as frequency difference and
phase shift difference as well as location-dependent features
such as RSS and angle of arrival (AoA). Given a set of observa-
tions (x1, s1), . . . , (xN, sN), where each observation (xi, si) has
p features (xi ∈ Rp) and d spatial coordinates (si ∈ Rd), the
goal is to infer the latent variables Z = {zi, . . . , zn} based on
X and S, where zi ∈ C, and C = {1, . . . , C} denotes the set of
class labels. In wireless fingerprinting, class labels correspond
to the identities of wireless devices. The IHMRF model can
be represented by a graphical model where the filled nodes
refer to observations and blank nodes refer to latent variables Z.
Given the time stamps T = {t1, t2, . . . , tN}, the spatial-temporal
features {(s1, t1), . . . , (sN , tN)} were used to build a neighbor-
hood graph for the latent states Z, in which states zi and zj are
connected by an undirected edge if they are spatial temporal
neighbors. Each latent state variable zi emits an observation xi.
The key difference between IHMRF and IGMM is that IHMRF
utilizes the spatial-temporal vicinity of observations. Based
on the hidden Markov random field theory, the hidden states
should be consistent if they are neighbors to each other, while in
the original IGMM model, two neighbor nodes zi and zj might
follow different clusters if their emission observations xi and
xj belong to different Gaussian distributions. The combination
of these two independent estimates will improve the estimation
accuracy.

Compared with IGMM, IHMRF is able to capture the spatial
dependencies between latent variables {Zi}N

i=1 concurrently by
introducing β (the inverse temperature of the model) and γ

(the inverse temperature parameter). The value of zi is decided
based not only on its spatial neighbors but also on its closest
Gaussian mixture. If an observation’s neighbor’s class label is
not consistent with its closest Gaussian mixture, γ is used to
adjust the weight we put on each side. A smaller γ implies
a larger weight of the contribution of Gaussian mixture. In
an extreme case that γ = 0, IHMRF degenerates to IGMM.
For better scalability, variational method is used in [7] to im-
plement the inference on IHMRF. Through simulation studies,
the IHMRF model is shown to perform better than the IGMM
model in precision, recall, F-measure and relative index.
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TABLE II
COMPARISON OF FINGERPRINTING ALGORITHMS

C. Summary

In this section, we have reviewed existing algorithms on de-
vice fingerprinting. Depending on whether prior knowledge of
the fingerprints of legitimate devices is available, two types of
approaches can be taken, namely, white-list based approaches
and unsupervised learning based approaches. Compared to
white-list based approaches, unsupervised learning based ap-
proaches incur higher computation complexity. Furthermore,
they can only detect the presence of the attacks and the likely
culprit while not being able to exactly pin down the malicious
devices. Despite the limitations, unsupervised learning based
approaches require no human intervention and pre-registration
process, making them more practical in real deployments. The
detailed comparison is given in Table II.

V. OPEN PROBLEMS AND FUTURE RESEARCH DIRECTIONS

In this section, we discuss some open problems and possible
future research directions in wireless security using device
fingerprints.

A. Feature Selection

In Section III, we provided a taxonomy of features that can
be used for device fingerprinting. As summarized in Table I,
features may be obtained from different layers of the network
stack, and may work at different granularities. The important
questions are, subject to hardware constraints, i) how to de-
termine the best set of features to extract? and ii) how to best
combine the features for device fingerprinting? These are topics
of feature selection.

Feature selection, also known as variable selection, attribute
selection, is the process to select a subset of relevant features
for use in model construction [47]. The key idea of feature
selection is that there are many redundant or irrelevant features,
and machine learning techniques such as principle component
analysis (PCA) and SVM can be employed to reduce the dimen-
sion of the feature space, or project the features to a transformed
space. There has been little work on feature selection for device
fingerprinting. In [13], useful RF fingerprints were extracted
from spectral components of the RACH preamble sequence
across the transition phase as well as the steady-state portion of
the signal. To reduce the dimensionality and remove irrelevant
noisy features of the feature vector, an information theoretic

approach to feature selection is explored. Mutual information
is used as a basis for selecting a subset of all possible spectral
features. Although only limited works have been done on
fingerprints features selection, there are still several criteria can
be adopted:

• PHY layer features may vary due to environmental fac-
tors or mobility of transceivers. It is thus crucial to select
robust device-specific features that are less sensitive to
device location and environmental settings. For example,
features in modulation domain are typically more robust
than those in waveform domain.

• MAC layer features are limited to individual wireless
technologies. While they are easier to extract using off-
the-shelf components, MAC layer features are typically
vendor specific and cannot be used for device finger-
printing. Another consideration of the choice of MAC or
upper layer features is whether the associated feature is
available from closed networks that employ data encryp-
tion (e.g., WPA, WPA2 in 802.11).

• Features that can be extracted passively are generally
preferred compared to active features.

B. Benchmarking Fingerprinting Algorithms

Many existing fingerprinting algorithms are evaluated in
isolation through controlled experiments or using simulated or
synthetic data. As a result, it is hard to compare their per-
formance objectively. Publicly available data repository such
as CRAWDAD [48] can help alleviate such a problem but
the datasets do not contain traces from illegitimate devices.
Furthermore, most datasets are either MAC layer traces or ill-
suited for extracting rich PHY layer features.

To benchmark fingerprinting algorithms, researchers need to
take a multi-pronged approach. First, as a community, we need
a comprehensive collection of datasets for evaluating different
algorithms. The datasets should contain labeled traces from
a variety of devices collected from both indoor and outdoor
environments, and different mobility patterns. Both raw signals
and extracted features shall be included. Second, in addition
to conventional performance metrics such as confusion ma-
trix, Receiver operating characteristic (ROC), precision and
recall rate, the scalability and execution time of the proposed
algorithms need to be assessed as well. Algorithms that are
computational intensive may not be suitable in scenarios where
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a large number devices may be present and timely decisions are
needed. Another relevant metric is energy consumption, which
is crucial in portable systems. Third, the attacker model should
not be limited to identity spoofing. One interesting problem is
whether the fingerprinting algorithms themselves are resilient
to attacks. For instance, if it is known that traffic patterns in
WLANs are used as fingerprints, an attacker may selectively
jam the channel to modify the packet inter-arrival time and
deceive the fingerprinting algorithm into misidentification.

C. Fingerprinting Non-WiFi Devices

Predominantly, existing device fingerprinting approaches tar-
get WLAN networks. Most known MAC layer features pertain
to 802.11 frames. With the pervasive deployment of wireless
technologies in wide-area data networks, point-of-sale systems,
and localization systems, just to name a few, it is expected
that attacks on non-WiFi wireless devices and networks such
as bluetooth low-energy (BLE), cellular systems, near-field
communication (NFC) devices may pose serious threats with
severe financial and privacy ramifications. NFC is a special
type, but Ultra-high-frequency (UHF) radio frequency identi-
fication (RFID) fingerprinting is important, because for RFID
authentication and cryptography are challenging.

D. Other Topics

There are a few other research directions that are worth
exploring. First, existing device fingerprinting approaches are
primarily concerned with improving the accuracy of detection.
This may be at the expense of high computation complexity
and higher energy costs at the data collectors. Second, it will be
interesting to design algorithms that require as few observations
as possible to limit the negative impact of malicious users. This
is in analogous to quickest detection approaches for anomalies
or changes [49]. However, the problem is more complex since
the observations are multidimensional and the fingerprints of
illegitimate users are unknown a priori. Third, while wireless
fingerprints are important in device identification, other sources
of signals may be utilized as well including acoustic, thermal or
magnetic signatures. Considering the rapid innovation pace in
wireless fingerprinting scenario, the area of device fingerprint-
ing will continuously face numerous challenges that cannot be
covered within the scope of this paper.

VI. CONCLUSION

In this paper, we have provided a comprehensive survey on
device fingerprinting for enhancing wireless network security.
A taxonomy of features that can be used for fingerprinting,
along with several fingerprinting algorithms have been elab-
orated.The key idea is to extract characteristics from trans-
mitted signal or frames from the wireless devices and their
environments to generate non-forgeable signatures. The unique
signatures are then used to distinguish between legitimate and
malicious devices. Device fingerprinting solutions can be com-
bined with other techniques such as localization and tracking to
mitigate insider attacks in wireless networks.
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